RESEARCH REPORT

Comparison of the effects of low childhood socioeconomic position and low adulthood socioeconomic position on self rated health in four European studies

Martin Hyde, Hrkal Jakub, Maria Melchior, Floor Van Oort, Simone Weyers

J Epidemiol Community Health 2006;60:882-886. doi: 10.1136/jech.2005.043083

See end of article for authors' affiliations

Correspondence to: Mr M Hyde, Centre for Behavioural and Social Sciences in Medicine, UCL, Wolfson Building 48 Riding House Street, London W1W 7EY, UK; martin.hyde@ucl.ac.uk

Accepted for publication 11 March 2006

Background: Socioeconomic inequalities in health are a persistent feature throughout Europe. Researchers and policy makers are increasingly using a lifecourse perspective to explain these inequalities and direct policy. However, there are few, if any, cross national lifecourse comparisons in this area.

Methods: Associations between socioeconomic position (SEP) in childhood and in adulthood and poor self rated health among men and women at midlife were tested in four European studies from England (n = 3615), France (n = 11 595), Germany (n = 4183), and the Netherlands (n = 3801).

Results: For women, mutually adjusted analyses showed significant associations between poor self rated health and low SEP in both childhood and adulthood in England and the Netherlands, only low childhood SEP in Germany and neither childhood nor adulthood SEP in France. For men, mutually adjusted analyses showed significant associations between poor self rated health and low SEP in both childhood and adulthood in France and the Netherlands, only with adult SEP in England and only with childhood SEP in Germany.

Conclusion: In most countries adult SEP showed stronger associations with self rated health than childhood SEP. There are both gender and national differences in the associations between childhood and adulthood SEP. Policies designed to reduce inequalities in health need to incorporate a lifecourse perspective that is sensitive to different national and gender issues. Ultimately, more cross national studies are required to better understand these processes.

espite overall improvements in population health, socioeconomic inequalities in health are a persistent feature of most industrialised societies. ¹⁻⁴ Throughout Europe, policy makers, both at the EU and at the individual member state level, have maintained their commitment to reducing or removing these inequalities. ⁵ ⁶ There is debate about whether interventions in childhood or in adulthood would be most effective in reducing health inequalities. Increasingly academic researchers and policy makers are adopting a lifecourse perspective to understand how social disadvantage can result in poor health. ⁷ ⁸

The different lifecourse models have been comprehensively described and discussed elsewhere. Here is still some debate over which model best describes how disadvantage and health are connected across a person's life, there is now a growing body of literature that points convincingly to the effects of low socioeconomic position (SEP) in both childhood and adulthood on a range of health outcomes. However, some other studies have found independent effects of childhood SEP only with regard to mortality, stroke, and body mass index. In contrast, one other study found only evidence of an independent effect of adult SEP. With regard to self rated health, findings show that disadvantage at both childhood and adulthood significantly increases the likelihood of reporting poor health.

Self rated health is strongly related to both mortality and morbidity,^{27–29} and it is collected in most social surveys throughout Europe, therefore it offers the possibility of conducting cross national comparative analyses on a reliable health indicator. Cross national comparisons offer opportunities to better understand how social processes translate socioeconomic disadvantage into poor health.² ³⁰ However, to our knowledge, there are no cross national studies examining the effects of low SEP at different points in the lifecourse on

health in adulthood. Our aim was to examine the association between childhood SEP, adult SEP, and self rated health assessed at midlife in different European countries. We used four existing studies, which collected similar measures of SEP and health. On the basis of prior research^{25–26} we hypothesise that both low childhood SEP and low adulthood SEP will have independent effects on poor health at midlife, but that the effects will be greater for adult SEP. In addition, after cross sectional cross national results on inequalities in self rated health,^{2–31} we hypothesise that there will be national differences in the relative strength of these effects.

METHODS Samples

The English sample is drawn from the English longitudinal study of ageing (ELSA). ELSA is a nationally representative study of the non-institutional population aged over 50 years in England. Data on around 12 000 respondents were collected using face to face computer assisted personal interviews throughout the autumn of 2001. Fuller details of the study can be found elsewhere.32 The French data come from the GAZEL study, which is a longstanding prospective cohort of workers at Electricité de France-Gaz de France (EDF-GDF). Around 15 000 participants have been followed up since 1989, primarily through a mailed yearly questionnaire. Less than 1% of the cohort has been lost through follow up. Details of the sample can be found elsewhere.³³ German data come from the German socioeconomic panel (GSOEP), which is a representative longitudinal study of people living in private households in Germany. The GSOEP has been carried out Western Germany since 1984. In 1990, the study expanded into the former GDR. Data are collected through face to face interviews, with all household members aged 16 years and over. In this analysis, the sample was restricted to those who entered the study in 1984 and were therefore resident in Western Germany at the time. Details of the study can be found elsewhere. The Dutch data came from the GLOBE study, a prospective cohort study of 18 973 men and women that started in 1991. Participants were aged 14 to 75 at study baseline and have been followed up with regard to mortality and disease incidence through municipality registries. Data were collected by postal questionnaire. Details of the study can be found elsewhere. To make the samples as comparable as possible with each other and with previous studies, we decided to restrict them to those aged 40 to 60 years. This was possible for all samples except for ELSA, which does not include respondents aged under 50 years. Table 1 shows the final sample sizes and the distribution of men and women and mean age of each study.

Variables

Childhood SEP was operationalised using father's occupation and coded according to the Erickson-Goldthorpe and Portercarrero (EGP) classification.36 Following Kunst and colleagues, we distinguished high and low SEP groups.31 Respondents whose father had been either EGP class 1, "high service", or 2, "low service", were coded as having high SEP in childhood, while respondents whose father had been in EGP class 3, "routine non-manual", 7, "manual supervisors", 8, "skilled manual", 9, "semi-skilled or unskilled manual", or 10, "farm labourer", were coded as having had low childhood SEP. Those who reported that their father had been self employed—that is, from class 4, 5, or 6, were excluded from these analyses. Participants' own occupation was used as a measure of adult SEP and was also coded using the EGP, following the same rules as for childhood SEP. Again the self employed were excluded.

In three of the studies self rated health was measured using a 5 point scale from very good to poor health. Responses were dichotomised into good health (comprising the first three responses) and poor health (comprising the last two responses). In the GAZEL study, self rated health was measured on an 8 point scale, and the lowest third of the distribution was considered as poor health. Table 1 shows the distributions of childhood SEP, adulthood SEP, and poor

health in each of the samples.

Analyses

Three logistic regression models were constructed to test the effects of low SEP in childhood and in adulthood on poor self rated health in adulthood. In the first model (model 1) only childhood SEP was included. In the second model (model 2) only adult SEP was included. In the third model (model 3) both childhood and adulthood SEP were included together. Analyses were carried out separately for men and women, using either the Statistical Package for Social Sciences (SPSS) or Statistical Analysis System (SAS).

RESULTS

For men, in the mutually adjusted analyses, childhood SEP was related to poor self rated health independently of adult SEP related to self rated health in France (OR 1.20), Germany (OR 1.62), and the Netherlands (OR 1.55) (table 2), whereas for women this was the case in England (OR 1.75) and the Netherlands (OR 1.55) (table 3). Adult SEP was related independently to self rated health in England (OR 2.09), France (OR 1.34), and the Netherlands (OR 2.52) for men, and in England (OR 1.60), Germany (OR 1.62), and the Netherlands (OR 1.68) for women. For French women neither childhood nor adulthood SEP were related to self rated health (table 3).

DISCUSSION

The persistence of socioeconomic inequalities within many European countries, despite overall improvements in population health, has led many researchers and policy makers to adopt a lifecourse perspective to better understand and tackle these inequalities. However, to our knowledge, there have been no cross national comparisons of the relation between low childhood and low adulthood SEP on health later in life. In the absence of such a study, we attempted to explore these processes in four existing national samples by harmonising our respective measures of SEP and self rated health. In contrast with our hypotheses, low SES during both periods was not uniformly associated with poor health in all four

	England	France	Germany	Netherlands
N	3615	11595	4183	3801
Mean age (SD)	54.7 (2.6)	54.9 (3.2)	48.7 (5.8)	50.3 (5.6)
% Female	57.2	26.0	46.3	29.8
% Low childhood SES	63.5	34.4	53.2	78.7
% Low adulthood SES	68.9	5.3	28.9	62.7
% Poor self assessed health	22.5	11.0	13.8	12.6

Table 2 Association between self rated poor health and low childhood and adult socioeconomic position in men. Odds ratios and 95% confidence intervals

	Model 1: childhood SEP		Model 2: adult SEP		Model 3: mutually adjusted	
	OR	95% CI	OR	95% CI	OR	95% CI
England	1.64	(1.19, 2.26)			1.36	(0.97, 1.90)
			2.38	(1.82, 3.11)	2.09	(1.55, 2.81)
France	1.22	(1.07, 1.39)			1.20	(1.05, 1.37)
			1.38	(1.06, 1.69)	1.34	(1.06, 1.69)
Germany	1.90	(1.37, 2.63)			1.62	(1.03, 2.53)
,		,,,	1.68	(1.21, 2.32)	1.40	(0.95, 2.05)
Netherlands	2.11	(1.47, 3.05)		, , , , , ,	1.55	(1.06, 2.26)
		(11.11) 0.00)	2.76	(2.08, 3.65)	2.52	(1.88, 2.36)

Model 1: low childhood SES compared with high childhood SES; model 2: low adulthood SES compared with high adulthood SES; model 3: 1 and 2, mutually adjusted. Figures in bold are significant at the p < 0.05 level.

884 Hyde, Jakub, Melchior, et al

Table 3 Association between self rated poor health and low childhood and adult socioeconomic position in women. Odds ratios and 95% confidence intervals

	Model 1: childhood SEP		Model 2: adult SEP		Model 3: mutually adjusted	
	OR	95% CI	OR	95% CI	OR	95% CI
England	1.93	(1.47, 2.54)			1.75	(1.33, 2.32)
			1.86	(1.40, 2.47)	1.60	(1.17, 2.18)
France	0.91	(0.75, 1.12)			0.85	(0.29, 2.50)
			0.85	(0.29, 2.49)	0.92	(0.75, 1.12)
Germany	1.04	(0.77, 1.41)		, , ,	0.69	(0.44, 1.06)
,		, , , , ,	1.41	(0.98, 2.03)	1.62	(1.06, 2.49)
Netherlands 1.98	(1.27, 3.10)		, / = /	1.75	(1.10, 2.79)	
		()	2.03	(1.30, 3.18)	1.68	(1.06, 2.67)

Model 1: low childhood SES compared with high childhood SES; model 2: low adulthood SES compared with high adulthood SES; model 3: 1 and 2, mutually adjusted. Figures in bold are significant at the p<0.05 level.

samples. Overall, adult SES was more consistently associated with poor health than childhood circumstances.

These findings are consistent with other studies that show variation in the extent and magnitude of social inequalities in health across industrialised countries.2 This may be, in part, because the distributions of health and risk factors vary from country to country, and it has been suggested that the specific determinants of inequalities may not be identical in each nation.³⁷ However, it is interesting that the variation in the magnitude of the significant associations showed gender differences. For women, in countries where SEP is associated with poor health (England, Netherlands, and Germany), there was a relative homogeneity of the strength of the association. However, for men the strength of associations showed more variation. In addition, the results show interesting national differences in the gendered pattern of associations. Interestingly neither low SEP in childhood nor in adulthood was associated with poor health for women in the French sample. However, this is in line with other research among women in the GAZEL study.38 This could, in part, be attributable to the fact that the women in the French study are drawn from an occupational cohort while those in the other country studies are general population samples.

Because of the nature of the study, there are two methodological considerations that need to be taken into account. There are issues that are common to all lifecourse studies and other issues that are common to all cross national studies. Our measures of childhood SEP relied upon retrospective recall that may be imperfect.³⁹ It is reassuring, then, that studies conducted in the UK and in the USA show that memories of past socioeconomic circumstances tend to be reliable.40 Al None the less, participants with the most disadvantaged circumstances may have failed to report their father's occupation: for instance 10% of the French sample did not state their father's job, and as they were more likely to report poor health (data available on request) these data were probably not missing at random. Overall, any misclassification of childhood SEP is likely to have biased our results towards the null.

Another potential limitation is that our samples were different: three were based on the general population (England, Netherlands, and Germany) while one included only working men and women (France). Three of our studies were national (England, Germany, and France), while one was based in the area of a large city (Netherlands). To make our samples as comparable as possible we limited the analyses to a population aged 40 to 60 and used a measure of SEP designed for international comparisons. Yet, although the EGP is designed for international comparisons, the position and meaning of occupational characteristics might differ between countries and might have different implications. However, by collapsing occupational categories

into two broad groups, we probably reduced the risk of misclassification between countries. As Elias⁴² shows regarding the ISCO88, the higher the level of aggregation of occupational classes the greater the reliability of the coding.

However, this does show the difficulty of relying on a single measure of SEP. As other studies have shown using multiple measures of SEP, such as education, income, or wealth, may produce more accurate estimates of the effect of poor SEP on health. 43 It has been argued that this is especially so as people approach retirement when the salience of occupationally based measures of SEP become weaker.44 However, few studies if any collect retrospective data on parental income or education given the obvious problems of recall error that this would produce. Hopefully prospective longitudinal studies could test to see if other SEP measures, such as education or income generate a similar pattern of results. Additionally there may be other factors that affect health that were not considered in the models we used. Studies from the USA, for example, routinely show the effect of being non-white has on health. However, in Europe, although this is an increasing issue for younger age groups, this is not a consideration among this age group where there is little ethnic diversity reflecting the different histories of migration of the two regions.

There are also potential limitations related to our outcome measure. Firstly, unlike the other studies GAZEL used an eight item response option. Despite our efforts to make this as comparable with the outcomes used in the other studies as possible, by allocating the same proportion of the response distribution to poor health, there is a possibility that respondents assess their health differently when using different metrics. Reassuringly, Eriksson and colleagues found that the number of response options given when assessing general health has very little effect on the patterning of associations with standard sociodemographic characteristics.45 Secondly, and more generally, self rated health acts as an umbrella for a range of illnesses, many of which have different aetiological periods and are therefore differentially influenced by both childhood and adult SEP. Thus studies using disease specific outcomes are required to better understand the temporal sequencing of factors that contribute to health inequalities.46 Additionally, health ratings may be influenced by cultural factors. As has been noted elsewhere, respondents draw upon a range of different aspects of health, for example both physical and psychological wellbeing, and health behaviours, when evaluating their health in general.47 48 It is worth noting here that there are developments underway, using either objective health measures or vignettes, to try to calibrate self reported health measures in cross national research.49 50

Methodological limitations notwithstanding, these analyses show the importance (and difficulties) of international

What this paper adds

This paper adds to our understanding of how national and gendered patterns of disadvantage at different points during the lifecourse affect health later in life.

Policy implications

Policy makers need to combat disadvantage during both childhood and adulthood to reduce health inequalities. But such policies need to be sensitive to national and gender differences.

comparisons for advancing our knowledge of the development of socioeconomic inequalities in health across countries. For policy makers, this study has shown the importance of lifetime disadvantage, and that life course disadvantage affects nations and men and women differently.

SPONSORS/ACKNOWLEDGEMENTS

The authors thank the organisers and fellow participants of the European Science Foundation summer school on "Social variations in health expectancy in Europe" in 2003, where the idea for the present paper was conceived. Martin Hyde would also like to thank Paul Campbell for his assistance with the SEP coding for the ELSA data.

Authors' affiliations

M Hyde, Centre for Behavioural and Social Sciences in Medicine, University College London, UK

H Jakub, Institute of Health Information and Statistics, Czech Republic M Melchior, INSERM U687-IFR69, France

F Van Oort, Department of Public Health, Erasmus Medical Centre, Netherlands

\$ Weyers, Department of Medical Sociology, University of Dusseldorf,

Funding: none.

Conflicts of interest: none

REFERENCES

- Wilkinson RG, Marmot MG. Social determinants of health. The solid facts. 2nd ed. Denmark: World Health Organisation, 2003.
- Kunst AE, Bos V, Lahelma E, et al. Trends in socioeconomic inequalities in selfassessed health in 10 European countries. Int J Epidemiol 2005;34:295–305.
- Mackenbach JP, Kunst AE, Cavelaars AEJM, et al. Socioeconomic inequalities in morbidity and mortality in western Europe. Lancet 1997;349:1655-9
- Cavelaars AEJM, Kunst AE, Geurts JJM, et al. Differences in self reported morbidity by educational level: a comparison of 11 Western European countries. J'Epidemiol Community Health 1998;52:219-27
- 5 Acheson D. Independent inquiry into inequalities in health. London: The Stationery Office, 1998.
- 6 Byrne D. Enabling good health for all. A reflection process for a new EU health strategy. Brussels: EU, 2004.
- Mackenbach JP, Howden-Chapman P. New perspectives on socioeconomic inequalities in health. Perspect Biol Med 2003;46:428-44.
- Graham H. Building an inter-disciplinary science of health inequalities: the example of lifecourse research. Soc Sci Med 2002;55:2005-16.
- Ben Shlomo Y, Kuh D. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. Int J Epidemiol 2002;31:285-93.
- 10 Lynch J, Davey Smith G. A life course approach to chronic disease
- epidemiology. Annu Rev Public Health 2005; 26:1–35.

 Kuh D, Ben Shlomo Y, Lynch J, et al. Life course epidemiology. J Epidemiol Community Health 2003;**57**:778–83.
- Blane D. The life course, the social gradient, and health. In: Marmot MG, Wilkinson RG, eds. Social determinants of health. Oxford: Oxford University Press, 1999:64-80.

- 13 Pollitt RA, Rose KM, Kaufman JS. Evaluating the evidence for models of life course socioeconomic factors and cardiovascular outcomes: a systematic review. BMC Public Health 2005;5:7
- 14 Harper S, Lynch J, Hsu WL, et al. Life course socioeconomic conditions and adult psychosocial functioning. Int J Epidemiol 2002;31:395-403
- 15 Luo Y, Waite LJ. The impact of childhood and adult SES on physical, mental, and cognitive well-being in later life. J Gerontol B Psychol Sci Soc Sci 2005;60:S93-101.
- 16 Davey Smith G, Hart C. Life-course socioeconomic and behavioral influences on cardiovascular disease mortality: the collaborative study. Am J Public Health 2002;92:1295-8.
- Turrell G, Lynch JW, Kaplan GA, et al. Socioeconomic position across the lifecourse and cognitive function in late middle age. J Gerontol B Psychol Sci Soc Sci 2002;57:S43-51.
- Power C, Hypponen E, Davey Smith G. Socioeconomic position in childhood and early adult life and risk of mortality: a prospective study of the mothers of the 1958 British birth cohort. Am J Public Health 2005;95:1396–402.
- 19 Harper S, Lynch J, Hsu WL, et al. Life course socioeconomic conditions and adult psychosocial functioning. Int J Epidemiol 2002;31:395–403.
- 20 Lawlor DA, Ebrahim S, Davey Smith G. Adverse socioeconomic position across the lifecourse increases coronary heart disease risk cumulatively findings from the British women's heart and health study. J Epidemiol Community Health 2005;59:785-93.
- Blane D, Hart CL, Davey Smith G, et al. Association of cardiovascular disease risk factors with socioeconomic position during childhood and during adulthood. BMJ 1996;**313**:1434–8.
- 22 Kuh D, Hardy R, Langenberg C, et al. Mortality in adults aged 26-54 years related to socioeconomic conditions in childhood and adulthood: post war birth cohort study. BMJ 2002;325:1076-80.
- 23 Hart CL, Hole DJ, Davey Smith G. Influence of socioeconomic circumstances in early and later life on stroke risk among men in a Scottish cohort study. Stroke 2000:31:2093-7
- 24 Marmot M, Shipley M, Brunner E, et al. Relative contribution of early life and adult socioeconomic factors to adult morbidity in the Whitehall II study J Epidemiol Community Health 2001;55:301-7.
- 25 Adams J, White M, Pearce MS, et al. Life course measures of socioeconomic position and self reported health at age 50: prospective cohort study. J Epidemiol Community Health 2004;58:1028–9.
- 26 Elstad JI. Childhood adversities and health variations among middle-aged men: a retrospective lifecourse study. Eur J Public Health 2005;15:51–8.
- Idler EL, Benyamini Y. Self-rated health and mortality: a review of twenty-seven community studies. J Health Soc Behav 1997;38:21–37.
- 28 Moller L, Kristensen TS, Hollnagel H. Self rated health as a predictor of coronary heart disease in Copenhagen, Denmark. J Epidemiol Community Health 1996;**50**:423–8.
- 29 Miilunpalo S, Vuori I, Oja P, et al. Self-rated health status as a health measure: the predictive value of self-reported health status on the use of physician services and on mortality in the working-age population. J Clin Epidemiol 1997;**50**:517–28.
- Marmot MG, Bobak M. International comparators of poverty and health in Europe. BMJ 2000;321:1124-8.
- Cavelaars AEJM, Kunst AE, Geurts JJM, et al. Morbidity differences by occupational class among men in seven European countries: an application of
- the Erikson-Goldthorpe social class scheme. Int J Epidemiol 1998;27:222–30.

 Taylor R, Conway L, Calderwood L, et al. Methodology. In: Marmot M, Banks J, Blundell R, et al, eds. Health wealth and lifestyles of the older population in England. The 2002 English Longitudinal Study of Ageing. London: IFS, 2003.
- 33 Bonenfant S, Cœuret-Pellicer M, Goldberg M, et al. La cohorte Gazel des 20,000 volontaires. Année 14. Paris: INSERM Unité 88, 2004.
- 34 Haisken-DeNew JP, Frick JR. Desktop companion to the German socioeconomic panel study. Berlin: SOEP, 2003.
- Mackenbach JP, Vandemheen H, Stronks K. A prospective cohort study investigating the explanation of socioeconomic inequalities in health in the Netherlands. Soc Sci Med 1994;38:299-308.
- Erikson R, Goldthorpe JH. The constant flux. Oxford: Clarendon Press, 1992.
- Fuhrer R, Shipley MJ, Chastang JF, et al. Socioeconomic position, health, and possible explanations: a tale of two cohorts. Am J Public Health 2002:**92**:1290-4.
- 38 Melchior M, Goldberg M, Krieger N, et al. Occupational class, occupational mobility and cancer incidence among middle-aged men and women: a prospective study of the French GAZEL cohort. Cancer Causes Control 2005:16:515-24
- 39 Dex S. Work and life history analysis. In: Life and work history analysis. Qualitative and quantitative developments. London: Routledge, 1991:1-19.
- 40 Berney LR, Blane DB. Collecting retrospective data: accuracy of recall after 50 years judged against historical records. Soc Sci Med 1997;45:1519-25.

 41 Krieger N, Okamoto A, Selby JV. Adult female twins' recall of childhood
- social class and father's education: a validation study for public health research. Am J Epidemiol 1998;147:704–8.
- 42 Elias P. Occupational classification: concepts, methods, reliability, validity and cross-national comparability. Warwick: Institute for employment research, University of Warwick, 1997.
- 43 Singh-Manoux A, Clarke P, Marmot M. Multiple measures of socio-economic position and psychosocial health: proximal and distal measures. Int J Epidemiol 2002;**31**:1192–9.
- 44 Grundy E, Holt G. The socioeconomic status of older adults: How should we measure it in studies of health inequalities? J Epidemiol Community Health 2001;55:895-904

- 45 Eriksson I, Unden AL, Elofsson S. Self-rated health. Comparisons between three different measures. Results from a population study. Int J Epidemiol 2001;30:326–33.
- 46 Singh-Manoux A, Adler NE, Marmot MG. Subjective social status: its determinants and its association with measures of ill-health in the Whitehall II study. Soc Sci Med 2003:56:1321–33.
- study. Soc Sci Med 2003;56:1321–33.
 47 Manor O, Matthews S, Power C. Dichotomous or categorical response?
 Analysing self-rated health and lifetime social class. Int J Epidemiol 2000;29:149–57.
- 48 Sen A. Health: perception versus observation. BMJ 2002;324:860-1.
- 49 Salomon JA, Tandon A, Murray CJL. Comparability of self rated health: cross sectional multi-country survey using anchoring vignettes. BMJ 2004;328:258–61.
- 2004;326:236-61.
 50 Jürges H. Cross-country differences in general health. In: Börsch-Supan A, Brugiavini A, Jürges H, et al, eds. Health, ageing and retirement in Europe. First results from the survey of health, Ageing and retirement in Europe. Mannheim: Mannheim research institute for the economics of ageing, 2005:95-101.

THE JECH GALLERY

Visions and voices: HIV in the 21st century. Indigent persons living with HIV/AIDS in the southern USA use photovoice to communicate meaning

Visions and voices: HIV in the 21st century used photovoice, an innovative and action oriented qualitative method of participatory action research, 1-5 to uncover the realities of indigent persons living with HIV/AIDS (PLWHA) through photographic documentation and Paolo Freirean-based critical dialogue, and share these new understandings with local community members and leaders, policy makers, and advocates to develop plans to effect change.

Fifteen indigent participants in an urban city in North Carolina were provided cameras and took photographs based on photo assignments decided upon by the participants through consensus. This photograph, which was taken by a participant, of cardboard characters, illustrates the numbers and diversity of PLWHA. The participant provided this photograph with the caption, "I am HIV positive. How are you going to accept me?" As he explained, he could not take pictures of real PLWHA because of the stigma that continues to be attached to HIV/ AIDS. Yet, his caption suggests that this PLWHA is not going to tolerate anything other than acceptance. After nearly a quarter of a century of the HIV epidemic, the question is not, "Are you going to accept me?" Rather, the question is, "How are you going to accept me?"

ACKNOWLEDGEMENT

Human subject protection oversight was provided by the Wake Forest University School of Medicine Institutional Review Board. This study was funded by Forsyth County United Way and Wake Forest University School of Medicine Venture Funds (to SDR) and the Adam Foundation of Winston-Salem, NC (to SDR).

Figure 1 I am HIV positive. How are you going to accept me?

Correspondence to: Dr Scott D Rhodes, Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1063, USA; srhodes@wfubmc.edu

REFERENCES

- Booth T, Booth W. In the frame: Photovoice and mothers with learning difficulties. Disabil Soc 2003;18:431–42.
- Hergenrather KC, Rhodes SD, Clark G. Windows to work: exploring employment-seeking behaviors of persons with HIV/AIDS through photovoice. AIDS Educ Prev 2006;18:243–58.
 Lopez ED, Eng E, Randall-David E, et al. Quality-of-life concerns of African American breast cancer survivors
- 3 Lopez ED, Eng E, Randall-David É, et al. Quality-of-life concerns of African American breast cancer survivors within rural North Carolina: blending the techniques of photovoice and grounded theory. Qual Health Res 2005:15:99-115.
- 4 Streng JM, Rhodes SD, Ayala GX, et al. Realidad Latina: Latino adolescents, their school, and a university use photovoice to examine and address the influence of immigration. *Journal of Interprofessional Care* 2004;18:403–15.
- 5 Wang C, Burris MA. Empowerment through photo novella: portraits of participation. Health Educ Q 1994;21:171-86.